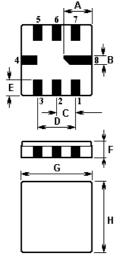
HR868.75 868.75MHz One-Port SAW Resonator For Wireless Remote Control

Approved by:

Checked by:

Issued by:

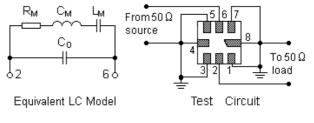

SPECIFICATION

PRODUCT:SAW RESONATORMODEL:HR868.75QCC8C

HOPE MICROELECTRONICS CO., LIMITED

Tel:+86-755-82973806 Fax:+86-755-82973550 E-mail: <u>sales@hoperf.com</u> http://www.hoperf.com Page 1 of 3 The HR868.75 is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC8C** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **868.750** MHz.

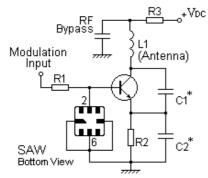
1.Package Dimension (QCC8C)

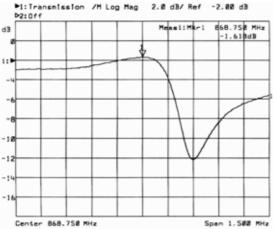

Pin	Configuration			
2	Terminal1			
6	Terminal2			
4,8	Case Ground			
1,3,5,7	Empty			
	· · · · · · · · · · · · · · · · · · ·			

Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	2.08	Е	1.2
В	0.6	F	1.35
С	1.27	G	5.0
D	2.54	Н	5.0

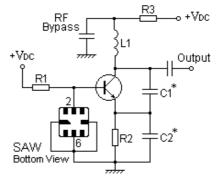
2.Marking

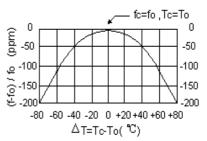
HR868.75


3. Equivalent LC Model and Test Circuit


Laser Marking

4.Typical Application Circuits


1) Low-Power Transmitter Application


5.Typical Frequency Response

2) Local Oscillator Application

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7.Performance

7-1.Maximum Ratings

Rating		Value	Unit	
CW RF Power Dissipation	Р	0	dBm	
DC Voltage Between Terminals	V _{DC}	± 30	V	
Storage Temperature Range	$T_{\rm stg}$	-40 to +85		
Operating Temperature Range	T _A	-10 to +60		

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25)	Absolute Frequency	f _C	868.600		869.900	MHz
	Tolerance from 868.750 MHz	Δf_{C}		± 150		kHz
Insertion Loss		IL		1.8	2.4	dB
Quality Factor	Unloaded Q	Q _U		8,550		
	50 Ω Loaded Q	Q_L		1,600		
Temperature Stability	Turnover Temperature	T ₀	25		55	
	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/ ²
Frequency Aging Absolute Value during the First Year		fA		10		ppm/yr
DC Insulation Resis	tance Between Any Two Terminals		1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		23	32	Ω
	Motional Inductance	L _M		36.0720		μH
	Motional Capacitance	C _M		0.9314		fF
	Shunt Static Capacitance	C ₀	2.00	2.25	2.50	pF

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

C 2003. All Rights Reserved.

- 1. The center frequency, f_C, is measured at the minimum IL point with the resonator in the 50 test system.
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_c , IL, 3 dB bandwidth, f_c versus T_c , and C_0 .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail <u>sales@hoperf.com</u>.